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• Flocculation 

• Deposition 

• Erosion 

• Transport 

• Consolidation 

*: It has been recognized that when the 

fraction of fine-grained sediments is larger 

than about 10%, a mixture consisting of 

cohesive and non-cohesive sediments may 

exhibit cohesive properties. 

Sedimentation 

in Estuary: 

Mixed Cohesive/Non-cohesive Sediments 

2 



1-D fractional sediment transport equation 

 

 

 Qtk total-load transport rate of size class k 
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Mixed Cohesive/Non-cohesive Sediments 

• Deposition Rate: 

 

 ,bk k sf k kD B C 
B channel width 

ak deposition probability or adaptation coef.  

wsf,k settling velocity 

Ck section-averaged sediment concentration 
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Coefficient αk 

 For non-cohesive sediment, k is the adaptation 

coefficient, calculated by 
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(Armanini and 

di Silvio, 1988) 

 For cohesive sediment, k is the deposition probability 

coefficient, which is related to the bed shear stress as 
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Settling Velocity wsf,k 

• For cohesive sediment, sf,k is calculated by Wu and Wang’s (2004) 

formula, through which the effect of flocculation is considered 
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 sf    median settling velocity of flocs 

 d50  median settling velocity of dispersed particles 
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C concentration, in kg/m3 

Cp sediment concentration at the maximum settling 

n, r, k1, k2  coefficient, ranging from 1 to 2 

k coefficient, equal to    1 21 / 1
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kt1, nt1, nt2    empirical coefficient 

p threshold bed shear stress at maximum  Kt 

1.0saK 
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Erosion Rate 
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pbk fraction of the kth size class in the surface layer of bed material 

Ebk
* potential erosion rate of the kth size class 

 For non-cohesive sediment 
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ce   critical bed shear stress for surface erosion 

M    erodibility coef., related to bed material properties 

n     coefficient, equal to 2.5 
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Critical Bed Shear Stress 

• The incipient motion of non-cohesive sediment is affected by the cohesion if 

non-cohesive and cohesive sediments coexist in the bed material.  
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ck,n critical bed shear stress of the  size class in the 

 situation where only non-cohesive sediment exists 

ce  critical bed shear stress for cohesive sediment 

pc fraction of cohesive sediment 

pcmin minimum fraction of cohesive sediment, below 

 which the critical bed shear stress for non-cohesive 

 sediment is the same as that when no cohesive 

 sediment exists 

pcmax  maximum fraction of cohesive sediment, above 

 which the critical bed shear stress of  non-cohesive 

 sediment is equal to that of cohesive sediment 

 0 0
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(Nicholson and O’Connor, 1986) 

ce0 initial critical bed shear stress 

d0 initial critical dry bed density 

d dry bed density 

k, n empirical coefficients 
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Bed Deformation 

• The fractional bed mass deformation rate is determined by 

 

 

• Then the total rate of change in bed mass is 

 

 

• which can be converted to the change in bed cross-sectional area: 
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Bed Material Sorting 
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Consolidation 

• Dry bed density in the first year (Hayter, 1983): 

 

 
 

• Dry bed density after 1 year (Lane and Koelzer,1953): 

 

 

• Bed Change due to Consolidation: 
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d  dry bed density 

d1        at one-year consolidation time 

a ,p     empirical coefficients 

t          consolidation time, in hour 

1 logd d t           empirical coefficient 

t        consolidation time, in year 
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j thickness of the jth layer of bed material 

dj dry bed density of the jth layer of bed material 
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• Mainstream:  

 from a dam at De Pere to 

Green Bay (11 km) 

• Tributary: 

 East River (joins the Fox 

River approximately 2 km 

upstream from the river 

mouth) 

 

• Size Classes: 

 Fine ~ 0.00316 mm 

 Medium ~ 0.0316 mm 

 Coarse ~ 0.447 mm 
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Lower Fox River 



Flow Discharge at the Dam Sediment Concentration at the Dam 

Sediment Concentration at the River Mouth 
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1-D Simulation in Lower Fox River 

(Lin and Wu, 2013) 



Gironde Estuary, France 
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2-D simulation using 

FASTER2D (Wu and Wang, 

2004) 

 

Mesh: 157×69 

Δt=30 min 

Period: May 19-22, 1974  

Gironde Estuary, France 

13 



Tidal Flow in Gironde Estuary, France 
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Tidal Level in Gironde Estuary 
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Velocity in Gironde Estuary 
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Salinity in Gironde Estuary 
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Sediment Discharge in Gironde 

Time (hour)

U
S

(k
g

/m
2
s)

75 80 85 90 95

-1

0

1

2

3

(b). PK54

Time (hour)

U
S

(k
g

/m
2
s)

75 80 85 90 95

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

(c). PK47

Time (hour)

U
S

(k
g
/m

2
s)

0 25 50 75
-1.5

-1

-0.5

0

0.5

1
(a). PK82

18 



San Francisco Bay 
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San Francisco Bay –Mesh 
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3-D 

Simulation 

using 

CRESTS3D 

(Wu and 

Lin, 2011) 



Flow near Golden Gate Bridge 

26000 28000 30000 32000

41000

42000

43000

44000

45000

46000

47000

1 m/s

(m)

(a)

G
o
ld

en
G

ate

B
rid

g
e

26000 28000 30000 32000

41000

42000

43000

44000

45000

46000

47000

1 m/s

(m)

(b)

G
o
ld

en
G

ate

B
rid

g
e

21 



Flow near Port Chicago 
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Water Level 
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Currents 
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