Research Topic

Estuarine Dynamics Modeling

Weiming Wu, PhD Professor Dept. of Civil and Environmental Eng. Clarkson University Potsdam, NY 13699, USA

Mixed Cohesive/Non-cohesive Sediments

- Flocculation
- Deposition
- Erosion
- Transport
- Consolidation

*: It has been recognized that when the fraction of fine-grained sediments is larger than about 10%, a mixture consisting of cohesive and non-cohesive sediments may exhibit cohesive properties.

Mixed Cohesive/Non-cohesive Sediments

1-D fractional sediment transport equation

$$\frac{\partial}{\partial t} \left(\frac{Q_{tk}}{\beta_{tk} U} \right) + \frac{\partial Q_{tk}}{\partial x} = E_{bk} - D_{bk} + q_{tlk} \qquad (k=1, 2, ..., N)$$

• **Deposition Rate:**

$$D_{bk} = B\alpha_k \omega_{sf,k} C_k$$

B a_k $w_{sf,k}$ C_k

channel width deposition probability or adaptation coef. settling velocity section-averaged sediment concentration

Coefficient α_k

• For non-cohesive sediment, α_k is the adaptation coefficient, calculated by

$$\frac{1}{\alpha_k} = \frac{a}{h} + \left(1 - \frac{a}{h}\right) \exp\left[-1.5\left(\frac{a}{h}\right)^{-1/6} \frac{\omega_{sf,k}}{u_*}\right]$$

(Armanini and di Silvio, 1988)

 $\leq au_{bd,\max}$

• For cohesive sediment, α_k is the deposition probability coefficient, which is related to the bed shear stress as

$$\alpha = \begin{cases} 1 & \tau_b < \tau_{bd,\min} \\ 1 - (\tau_b - \tau_{bd,\min}) / (\tau_{bd,\max} - \tau_{bd,\min}) \\ 0 & \tau_b > \tau_{bd,\max} \end{cases}$$

Settling Velocity *w*_{sf,k}

• For cohesive sediment, $\omega_{sf,k}$ is calculated by Wu and Wang's (2004) formula, through which the effect of flocculation is considered

$$\frac{\omega_{sf}}{\omega_{sd}} = K_d K_s K_{sa} K_t$$

$$K_d = (d_r / d_{50})^{n_d}$$

$$K_{s} = \begin{cases} 1 + k_{1}C^{n} & 0 < C \le C_{p} \\ k(1 - k_{2}C)^{r} & C > C_{p} \end{cases}$$

 $K_{sa} = 1.0$

$$K_{t} = \begin{cases} 1 + k_{t1} (\tau_{b} / \tau_{p})^{n_{t1}} & 0 < \tau \leq \tau_{p} \\ (1 + k_{t1}) (\tau_{b} / \tau_{p})^{-n_{t2}} & \tau > \tau_{p} \end{cases}$$

median settling velocity of flocs \mathcal{O}_{sf} median settling velocity of dispersed particles \mathcal{O}_{d50} medium diameter d_{50} d_r reference diameter, about 0.0215 mm coefficient, approximated to 1.8 n_d Cconcentration, in kg/m³ C_p sediment concentration at the maximum settling *n*, *r*, k_1 , k_2 coefficient, ranging from 1 to 2 coefficient, equal to $(1+k_1C_n^n)/(1-k_2C_n)^r$ k

 k_{tl}, n_{tl}, n_{t2} empirical coefficient au_p threshold bed shear stress at maximum K_t

Erosion Rate

$$E_{bk} = p_{bk} E_{bk}^*$$

fraction of the k^{th} size class in the surface layer of bed material potential erosion rate of the k^{th} size class

For non-cohesive sediment

$$E_{bk}^* = B \frac{\alpha_k \omega_{sf,k}}{AU_{tk}} Q_{tk}^*$$

For cohesive sediment

$$E_{bk}^{*} = BM\left(\frac{\tau_{b}}{\tau_{ce}} - 1\right)^{n}$$

- τ_{ce} critical bed shear stress for surface erosion
- *M* erodibility coef., related to bed material properties
- *n* coefficient, equal to 2.5

Critical Bed Shear Stress

1

 $\tau_{ck.n}$

 τ_{ce}

 p_c

 p_{cmin}

• The incipient motion of non-cohesive sediment is affected by the cohesion if non-cohesive and cohesive sediments coexist in the bed material.

$$\tau_{ck} = \begin{cases} \tau_{ck,n} + (\tau_{ce} - \tau_{ck,n})(p_c - p_{c\min}) / (p_{c\max} - p_{c\min}) \\ \tau_{ce} \end{cases}$$

$$p_{c} < p_{c\min}$$

$$p_{c\min} \le p_{c} \le p_{c\max}$$

$$p_{c} > p_{c\max}$$

critical bed shear stress of the size class in the situation where only non-cohesive sediment exists critical bed shear stress for cohesive sediment fraction of cohesive sediment

- minimum fraction of cohesive sediment, below which the critical bed shear stress for non-cohesive sediment is the same as that when no cohesive sediment exists
- p_{cmax} maximum fraction of cohesive sediment, above which the critical bed shear stress of non-cohesive sediment is equal to that of cohesive sediment

$$\tau_{ce} = \tau_{ce0} + k_{\tau} \left(\rho_d - \rho_{d0}\right)^{n_t}$$

(Nicholson and O'Connor, 1986)

 τ_{ce0} initial critical bed shear stress ρ_{d0} initial critical dry bed density ρ_d dry bed density k_{τ} n_{τ} empirical coefficients

Bed Deformation

• The fractional bed mass deformation rate is determined by

$$\frac{\partial M_{bk}}{\partial t} = \rho_s \left(D_{bk} - E_{bk} \right)$$

• Then the total rate of change in bed mass is

$$\frac{\partial M_{b}}{\partial t} = \sum_{k=1}^{N} \frac{\partial M_{bk}}{\partial t}$$

• which can be converted to the change in bed cross-sectional area:

$$\frac{\partial A_{b}}{\partial t} = \frac{1}{\rho_{s} \left(1 - p'_{m}\right)} \frac{\partial M_{b}}{\partial t}$$

 p'_m bed material porosity

Bed Material Sorting

$$\frac{\partial (M_m p_{bk})}{\partial t} = \frac{\partial M_{bk}}{\partial t} + p_{bk}^* \left(\frac{\partial M_m}{\partial t} - \frac{\partial M_b}{\partial t}\right)$$

Consolidation

Dry bed density in the first year (Hayter, 1983):

 $\frac{\rho_d}{\rho_{d1}} = 1 - a_{\rho} e^{-pt}$

dry bed density at one-year consolidation time empirical coefficients a_{ρ},p consolidation time, in hour

Dry bed density after 1 year (Lane and Koelzer, 1953):

 ρ_d

 ρ_{dl}

 $\rho_d = \rho_{d1} + \beta \log t$

empirical coefficient consolidation time, in year

Bed Change due to Consolidation:

 $\frac{\partial}{\partial t} \left(\delta_j \rho_{dj} \right) = 0$ δ_{j}

thickness of the *j*th layer of bed material dry bed density of the j^{th} layer of bed material

$$\Delta z_{b,c} = \sum_{j=1}^{J} \left(\delta_{j}^{n+1} - \delta_{j}^{n} \right) = \sum_{j=1}^{J} \delta_{j}^{n} \left(\frac{\rho_{dj}^{n}}{\rho_{dj}^{n+1}} - 1 \right)$$

• Mainstream:

from a dam at De Pere to Green Bay (11 km)

• Tributary:

East River (joins the Fox River approximately 2 km upstream from the river mouth)

Size Classes:
 Fine ~ 0.00316 mm
 Medium ~ 0.0316 mm
 Coarse ~ 0.447 mm

1-D Simulation in Lower Fox River

Sediment Concentration at the River Mouth

Clarkson

dely convention

Prof. Dr. Weiming Wu, Dept. of Civil and Environmental Eng.

Gironde Estuary, France

Clarkson

defy convention

Gironde Estuary, France

2-D simulation usingFASTER2D (Wu and Wang, 2004)

Mesh: 157×69 ∆t=30 min Period: May 19-22, 1974

Tidal Flow in Gironde Estuary, France

Clarkson

defy convention.

Tidal Level in Gironde Estuary

Velocity in Gironde Estuary

Salinity in Gironde Estuary

Sediment Discharge in Gironde

San Francisco Bay

San Francisco Bay –Mesh

3-D Simulation using CRESTS3D (Wu and Lin, 2011)

Flow near Golden Gate Bridge

Flow near Port Chicago

Water Level

Prof. Dr. Weiming Wu, Dept. of Civil and Environmental Eng.

Currents

Prof. Dr. Weiming Wu, Dept. of Civil and Environmental Eng.

Publications Related

W. Wu and S. S.Y. Wang (2004). "Depth-averaged 2-D calculation of tidal flow, salinity and cohesive sediment transport in estuaries," Int. J. Sediment Research, 19(3), 172–190.

W. Wu and Q. Lin (2011). "An implicit 3-D finite-volume coastal hydrodynamic model." Proc., 7th Int. Symposium on River, Coastal and Estuarine Morphodynamics, September 6-8, Beijing, China.

Q. Lin and W. Wu (2013). "A one-dimensional model of mixed cohesive and non-cohesive sediment transport in open channels." Journal of Hydraulic Research, IAHR, 51(5), 506–517, DOI: 10.1080/00221686.2013.812046.